If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+-19x+6=0
We add all the numbers together, and all the variables
15x^2-19x=0
a = 15; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·15·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*15}=\frac{0}{30} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*15}=\frac{38}{30} =1+4/15 $
| 4x+2=1÷2x+17 | | -3m-3m=54 | | 7/10x-4=18 | | 0=((-5x^2)-10x+120) | | 0=((5x^2)+10x+120) | | 0=5x^2+10x+120 | | 13x-15+8=4x+2=24 | | 27+6.0x=8.25x | | 4/14y=3/7 | | -3/4x-5=-9 | | 7-a=a-15 | | 3k+1=-2(k-8) | | 5y-6=44.20 | | 5x+68=180 | | x*0.375+(x*2)=38 | | 10w-17=96 | | 9/3h-1/3h+11=11 | | -10-5x-132=-4x+40+12x | | 12+4y-24=0 | | 16.8-v=-6 | | 4y-1=113 | | 4=t/3 | | 9y-4y-6=44.20 | | 5–2x=11 | | 6y-y=5y+1 | | -6+4b+8+6b=-13 | | -w=-10 | | 8x-3+4x+39=180 | | -7(2x+3)=21 | | 19x-5=180 | | x-9=x÷2+7 | | -(2x+5)=11 |